Abstract

The capability of mature cotton plants (Gossypium hirsutum L.) to adjust to progressive drying of their root zone by promoting root growth to adjacent wetted zones, and the implications of this process on irrigation design were investigated. Field grown plants that developed shallow root systems in response to a drip irrigation management of daily, surface soil wettings were exposed 85 days after emergence (DAE), while in the flowering stage, to a sudden change in water distribution in the form of deep soil wetting (DSW) followed by termination of irrigation. The shallow rooted plants (SRP) failed to respond to further surface soil wetting and the progressive drying of the profile by rapid root growth to the deeper-wetted zones; consequently, the SRP suffered from water deficiency for at least two weeks, evidenced by a gradual decrease in their leaf water potential (Lψw). Potted plants responded similarly. Daily irrigations of the pot surface with water amounts similar to those lost by evapotranspiration led to the development of a system in which most of the roots and available water became concentrated at the pot's upper section. A transition to irrigation from the bottom of the pot led to a reversed soil-water content gradient and failed to promote rapid root spreading to the deeper-wetted layers, in spite of the accelerated drying of the upper zone. The slow deepening of the root system was accompanied by water-stress symptoms as indicated by a considerable reduction in dry matter production. The root shoot ratio in these plants was not much greater than in non-stressed plants in which the surface wetting was continued. This indicated that preferential root growth relative to the shoot did not occur in response to the progressive drying of the shallow root zone. Rewetting of the root zone after a long period of soil water deficiency failed to promote rapid recovery of the root system in the form of root regrowth in this zone. It was concluded that the capability of mature cotton plant roots to adjust their growth to large changes in water distribution in the soil, is slow and that this should be taken into account when determining an irrigation regime in which the depth at which water is applied is changed during the growing season.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.