Abstract

Cotton is a significant cash crop of China. Timely and accurate cotton area and yield estimation is useful for management decisions related to the cotton procurement and sales. This study is a first research on cotton area and yield estimation based on remote sensing at Zhanhua County which is one of the high-quality cotton production demonstration bases of China. After normalization of Enhanced Vegetation Index (EVI) time series derived from Huanjin 1 A/B satellite (HJ-1 A/B), decision tree classifier was used to identify the cotton, and then K-Means classifier was applied to estimate cotton yield. The results indicated an overall accuracy of 95% for the cotton area estimation and 91% for the cotton yield classification. With further validation, it suggests that this method can be used to timely achieve the cotton area and growth information of this region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.