Abstract

Exploring the transport behaviors of thallium (Tl) in porous media is crucial for predicting Tl pollution in natural soils and groundwater. In recent years, the misuse of plastics has led to plastic becoming an emerging pollutant in soil. In this work, the effects of plastic particles on Tl(I) transport in water-saturated sand columns were investigated under different ionic strengths (ISs), pH values, and plastic particle sizes. The two-site nonequilibrium model was selected to fit the breakthrough curves (BTCs) of Tl(I). The results demonstrated that nanoplastics (NPs) accelerated Tl(I) transport at pH 7, which might be attributed to the competitive adsorption of NPs and Tl(I) on sand surfaces. However, at pH 5, the deposited NPs might provide more adsorption sites for Tl(I), and thus enhance its retention in the columns. In addition, the “straining” process could intercept microplastics (MPs) with Tl(I) that was attached under unfavorable attachment conditions, which would result in the inhibited mobility of Tl(I). On the other hand, the migration of plastics was restrained to some extent when Tl(I) was present. Overall, the findings from this work provided a new perspective for understanding the transport of Tl(I) and plastics in subsurface environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call