Abstract

The P140K point mutant of MGMT allows robust hematopoietic stem cell (HSC) enrichment in vivo. Thus, dual-gene vectors that couple MGMT and therapeutic gene expression have allowed enrichment of gene-corrected HSCs in animal models. However, expression levels from dual-gene vectors are often reduced for one or both genes. Further, it may be desirable to express selection and therapeutic genes at distinct stages of cell differentiation. In this regard, we evaluated whether hematopoietic cells could be efficiently cotransduced using low MOIs of two separate single-gene lentiviruses, including MGMT for dual-positive cell enrichment. Cotransduction efficiencies were evaluated using a range of MGMT : GFP virus ratios, MOIs, and selection stringencies in vitro. Cotransduction was optimal when equal proportions of each virus were used, but low MGMT : GFP virus ratios resulted in the highest proportion of dual-positive cells after selection. This strategy was then evaluated in murine models for in vivo selection of HSCs cotransduced with a ubiquitous MGMT expression vector and an erythroid-specific GFP vector. Although the MGMT and GFP expression percentages were variable among engrafted recipients, drug selection enriched MGMT-positive leukocyte and GFP-positive erythroid cell populations. These data demonstrate cotransduction as a mean to rapidly enrich and evaluate therapeutic lentivectors in vivo.

Highlights

  • Lentiviral vectors are promising gene transfer agents for ex vivo correction of inherited or acquired genetic defects

  • The woodchuck hepatitis virus posttranscriptional regulatory element (PRE) and a multiple cloning site were introduced for subsequent generation of vectors expressing AGT-P140K or the green fluorescence protein (GFP); pMND-methylguanine-DNA methyltransferase (MGMT) and pMNDGFP, respectively

  • Both vectors express at high levels in K562 cells, and distinct AGT, GFP, and dual-positive populations can be detected in cotransduced K562 cells

Read more

Summary

Introduction

Lentiviral vectors are promising gene transfer agents for ex vivo correction of inherited or acquired genetic defects. Hematopoietic disorders are well suited as targets for this approach, due to the relative ease with which these cells are harvested, transduced ex vivo with lentivirus, and reinfused into patients. Even with robust gene transfer efficiencies, the modified cells and their therapeutic potential are diluted upon reinfusion into the large population of endogenous, unmodified cells. Few inherited hematopoietic disorders, when genetically corrected, provide an inherent survival advantage at the hematopoietic stem cell level. To overcome this limitation, genes that permit selective expansion of transduced cells in vivo have been inserted into therapeutic vectors

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call