Abstract

This paper treats tracking as a foreground/background classification problem and proposes an online semi- supervised learning framework. Initialized with a small number of labeled samples, semi-supervised learning treats each new sample as unlabeled data. Classification of new data and updating of the classifier are achieved simultaneously in a co-training framework. The object is represented using independent features and an online support vector machine (SVM) is built for each feature. The predictions from different features are fused by combining the confidence map from each classifier using a classifier weighting method which creates a final classifier that performs better than any classifier based on a single feature. The semi-supervised learning approach then uses the output of the combined confidence map to generate new samples and update the SVMs online. With this approach, the tracker gains increasing knowledge of the object and background and continually improves itself over time. Compared to other discriminative trackers, the online semi-supervised learning approach improves each individual classifier using the information from other features, thus leading to a more robust tracker. Experiments show that this framework performs better than state-of-the-art tracking algorithms on challenging sequences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.