Abstract

The co-torrefaction of several biomasses may be a viable solution in the study area, as it produces biofuels and addresses waste-treatment concerns. This review evaluates biomass through ultimate, proximate, and FTIR analyses, and the mechanism of the co-torrefaction process is observed for product quality with a synergistic effect. Furthermore, the parameters of co-torrefaction, including temperature, reaction time, mass yield, energy yield, and the composition of the H/C and O/C ratio of the co-torrefied materials, are similar to those for coal composition. Different reactor types, such as fixed-bed, fluidized-bed, microwave, and batch reactors, are used for co-torrefaction, in which biomass blends with optimized blend ratios. The co-torrefaction process increases the bio-solid yield and heating value, the capacity to adsorb carbon dioxide, and the renewable fuel used for gasification. One of the objectives of this study is to adopt a process that must be viable, green, and sustainable without generating pollution. For this reason, microwave co-torrefaction (MCT) has been used in many recent studies to transform waste and biomass materials into an alternative fuel using a microwave reactor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.