Abstract

Therapeutics targeting the phosphatidylinositol 3-kinase/mammalian target of rapamycin (PI3K/mTOR) pathway initially produce potent antitumor effects, but resistance frequently occurs. Using a phosphoproteome analysis, we found that colorectal cancer (CRC) cells exhibit resistance against PI3K/mTOR inhibition through feedback activation of multiple receptor tyrosine kinases, and their downstream focal adhesion kinase, Src and extracellular signal-regulated kinases signaling. Unexpectedly, PI3K/mTOR blockade causes senescence, mediated by the activation of the stress kinase p38. The senescent cancer cells induce the secretion of various cytokines and this senescence-associated secretome increases migration and invasion capabilities of CRC cells. We found that cotargeting PI3K/mTOR and bromodomain and extra-terminal domain can suppress activation of many oncogenic kinases involved in resistance to the PI3K/mTOR inhibition, induce cell death in vitro and tumor regression in vivo, and further prolong the survival of xenograft models. Our findings provide a rationale for a novel therapeutic strategy to overcome resistance to the PI3K/mTOR inhibitors in CRC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call