Abstract
In this paper we study a systematic and natural construction of canonical coordinates for the reduced space of a cotangent bundle with a free Lie group action. The canonical coordinates enable us to compute Poincaré–Birkhoff normal forms of relative equilibria using standard algorithms. The case of simple mechanical systems with symmetries is studied in detail. As examples we compute Poincaré–Birkhoff normal forms for a Lagrangian equilateral triangle configuration of a three-body system with a Morse-type potential and the stretched-out configuration of a double spherical pendulum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.