Abstract

Accurate depiction of individual teeth from CBCT images is a critical step in the diagnosis of oral diseases, and the traditional methods are very tedious and laborious, so automatic segmentation of individual teeth in CBCT images is important to assist physicians in diagnosis and treatment. TransUNet has achieved success in medical image segmentation tasks, which combines the advantages of Transformer and CNN. However, the skip connection taken by TransUNet leads to unnecessary restrictive fusion and also ignores the rich context between adjacent keys. To solve these problems, this paper proposes a context-transformed TransUNet++ (CoT-UNet++) architecture, which consists of a hybrid encoder, a dense connection, and a decoder. To be specific, a hybrid encoder is first used to obtain the contextual information between adjacent keys by CoTNet and the global context encoded by Transformer. Then the decoder upsamples the encoded features by cascading upsamplers to recover the original resolution. Finally, the multi-scale fusion between the encoded and decoded features at different levels is performed by dense concatenation to obtain more accurate location information. In addition, we employ a weighted loss function consisting of focal, dice, and cross-entropy to reduce the training error and achieve pixel-level optimization. Experimental results demonstrate that the proposed CoT-UNet++ method outperforms the baseline models and can obtain better performance in tooth segmentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.