Abstract

MotivationIdeally, a molecularly distinct subtype would be composed of molecular features that are expressed uniquely in the subtype of interest but in no others—so-called marker genes (MGs). MG plays a critical role in the characterization, classification or deconvolution of tissue or cell subtypes. We and others have recognized that the test statistics used by most methods do not exactly satisfy the MG definition and often identify inaccurate MG.ResultsWe report an efficient and accurate data-driven method, formulated as a Cosine-based One-sample Test (COT) in scatter space, to detect MG among many subtypes using subtype expression profiles. Fundamentally different from existing approaches, the test statistic in COT precisely matches the mathematical definition of an ideal MG. We demonstrate the performance and utility of COT on both simulated and real gene expression and proteomics data. The open source Python/R tool will allow biologists to efficiently detect MG and perform a more comprehensive and unbiased molecular characterization of tissue or cell subtypes in many biomedical contexts. Nevertheless, COT complements not replaces existing methods.Availability and implementationThe Python COT software with a detailed user’s manual and a vignette are freely available at https://github.com/MintaYLu/COT.Supplementary information Supplementary data are available at Bioinformatics Advances online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.