Abstract

AbstractA 70 wt.% Sm0.5Sr0.5CoO3 – 30 wt.% Sm0.2Ce0.8O1.9 (SSC–SDC73) composite cathode was co‐synthesized by a facile one‐step sol–gel method, which showed lower polarization resistance and overpotential than those of physically mixed SSC–SDC73 cathode. The polarization resistance of co‐synthesized SSC–SDC73 cathode at 800 °C was as low as 0.03 Ω cm2 in air. Scanning electron microscopy (SEM) images showed that the enhanced electrochemical property was mainly attributed to the smaller grains and good dispersion of SSC and SDC phases within the composite cathode, leading to an increase in three‐phase boundary length. The dependence of polarization resistance with oxygen partial pressure indicated that the rate‐limiting step for oxygen reduction reaction was the dissociation of molecular oxygen to atomic oxygen process. An anode supported fuel cell with a co‐synthesized SSC–SDC73 cathode exhibited a peak power density of 924 mW cm−2 at 800 °C. Our results suggested that co‐synthesized composite was a promising cathode for intermediate temperature solid oxide fuel cells (IT‐SOFCs).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.