Abstract

We introduce cosymplectic circles and cosymplectic spheres, which are the analogues in the cosymplectic setting of contact circles and contact spheres. We provide a complete classification of compact 3-manifolds that admit a cosymplectic circle. The properties of tautness and roundness for a cosymplectic $p$-sphere are studied. To any taut cosymplectic circle on a three-dimensional manifold $M$ we are able to canonically associate a complex structure and a conformal symplectic couple on $M \times \mathbb{R}$. We prove that a cosymplectic circle in dimension three is round if and only if it is taut. On the other hand, we provide examples in higher dimensions of cosymplectic circles which are taut but not round and examples of cosymplectic circles which are round but not taut.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.