Abstract

Costunolide (CE) is a sesquiterpene lactone well-known for its antihepatotoxic, antiulcer, and anticancer activities. The present study focused on the evaluation of the cytogenetic toxicity and cellular death-inducing potential of CE in CHO cells, an epithelial cell line derived from normal ovary cells of Chinese hamster. The cytotoxic effect denoting MTT assay has shown an IC50 value of 7.56μM CE, where 50% proliferation inhibition occurs. The oxidative stress caused by CE was confirmed based on GSH depletion induced cell death, conspicuously absent in N-acetylcysteine (GSH precursor) pretreated cells. The evaluation of genotoxic effects of CE using cytokinesis block micronucleus assay and chromosomal aberration test has shown prominent induction of binucleated micronucleated cells and aberrant metaphases bearing chromatid and chromosomal breaks, indicating CE's clastogenic and aneugenic potential. The apoptotic death in CE treated cells was confirmed by an increase in the number of cells in subG1 phase, exhibiting chromatin condensation and membranous phosphatidylserine translocation. The apoptosis induction follows mitochondrial mediation, evident from an increase in the BAX/Bcl-2 ratio, caspase-3/7 activity, and mitochondrial membrane permeability. CE also induces cytostasis in addition to apoptosis, substantiated by the reduced cytokinetic (replicative indices) and mitotic (mitotic indices and histone H3 Ser-10 phosphorylation) activities. Overall, the cellular GSH depletion and potential genotoxic effects by CE led the CHO cells to commit apoptosis and lowered cell division. The observed sensitivity of CHO cells doubts unintended adverse effects of CE on normal healthy cells, suggesting higher essentiality of further studies in order to establish its safety efficacy in therapeutic explorations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call