Abstract
Costunolide is a natural sesquiterpene lactone. We elucidated what to our knowledge is a novel mechanism to highlight its potential in chemotherapy for prostate cancer, particularly androgen refractory prostate cancer. Several pharmacological and biochemical assays were used to characterize the apoptotic signaling pathways of costunolide (ChromaDex™) in prostate cancer cells. Costunolide showed effective antiproliferative activity against hormone dependent (LNCaP) and independent (PC-3 and DU-145) prostate cancer cells (ATCC®) by sulforhodamine B assay, clonogenic test and flow cytometric analysis of carboxyfluorescein succinimidyl ester labeling. In PC-3 cells data showed that costunolide induced a rapid overload of nuclear Ca(2+), DNA damage response and ATR phosphorylation. Costunolide induced G1-phase cell cycle arrest, which was supported by p21 up-regulation and its association with the cyclin dependent kinase 2/cyclin E complex. The association resulted in inhibition of the complex activity and inhibition of Rb phosphorylation. Costunolide mediated effects were substantially inhibited by glutathione, the reactive oxygen species scavenger and glutathione precursor N-acetylcysteine, and the Ca(2+) chelator BAPTA-AM other than the reactive oxygen species scavenger Trolox®. This indicated the crucial role of intracellular Ca(2+) mobilization and thiol depletion but not of reactive oxygen species production in apoptotic signaling. Data suggest that costunolide induces the depletion of intracellular thiols and overload of nuclear Ca(2+) that cause DNA damage and p21 up-regulation. The association of p21 with the cyclin dependent kinase 2/cyclin E complex blocks cyclin dependent kinase 2 activity and inhibits Rb phosphorylation, leading to G1 arrest of the cell cycle and subsequent apoptotic cell death in human prostate cancer cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.