Abstract

The emergence of Cloud Computing as a model of service provisioning in distributed systems instigated researchers to explore its pros and cons on executing different large scale scientific applications, i.e., Workflows. One of the most challenging problems in clouds is to execute workflows while minimizing the execution time as well as cost incurred by using a set of heterogeneous resources over the cloud simultaneously. In this paper, we present, Budget and Deadline Constrained Heuristic based upon Heterogeneous Earliest Finish Time (HEFT) to schedule workflow tasks over the available cloud resources. The proposed heuristic presents a beneficial trade-off between execution time and execution cost under given constraints. The proposed heuristic is evaluated for different synthetic workflow applications by a simulation process and comparison is done with state-of-art algorithm i.e. BHEFT. The simulation results show that our proposed scheduling heuristic can significantly decrease the execution cost while producing makespan as good as the best known scheduling heuristic under the same deadline and budget constraints.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.