Abstract

Significant progress is needed, in both large cities and small towns, to meet the ambitious targets set at international and national levels relating to universal access to safely managed sanitation. There has been increased recognition in the urban sanitation sector that in rapidly growing cities, there is unlikely to be a single centralised sanitation solution which can effectively deliver services to all demographics, and that heterogeneous approaches to urban sanitation are required. At the same time, due to competing investment priorities, there is a greater focus on the need for sanitation investments to address multiple objectives. However, calls for more informed sanitation planning and a more dynamic and disaggregated approach to the delivery and management of sanitation services have had limited impacts. This is in part due to the complexity of the drivers for sanitation investment, and the difficulties involved in identifying and addressing these multiple, often conflicting, goals. This paper examines three potential drivers of citywide sanitation decision-making – public health, sustainability and economic performance – via the three proxies of contamination, climate change and costs. It examines the importance of each driver and proxies, how they are considered in investment decisions, the current state of knowledge about them, and priority aspects to be included in decisions. At present, while public health is a common driver for improving sanitation, there are significant gaps in our understanding of faecal contamination spread and exposure, and how to select sanitation solutions which can best address them. Climate change is sometimes seen as a low priority for the sanitation sector given the immediacy and scale of existing challenges and the uncertainty of future climate predictions. However, potential risks are significant, and uninformed decisions may result in greater costs and increased inequalities. Cost data are sparse and unreliable, and it is challenging to build robust cost-effectiveness analyses. Yet these are needed to compare citywide options based on least-cost over their full life cycle. This paper provides insights into how existing evidence on contamination, climate change and costs can inform decisions on sanitation investments and help chart a sustainable way forward for achieving citywide services.

Highlights

  • The re-emergence of a citywide perspective on sanitation has focused much-needed attention on sustainable solutions that consider the full sanitation service chain for the entire urban population

  • Illustrating this point, a recent assessment of the outcomes of investment by development banks found that between 2010 and 2017, banks invested 20 times more in sewerage than in fecal sludge management (FSM) despite the much larger populations serviced by onsite systems (Hutchings et al, 2018)

  • To illustrate the challenges and opportunities inherent in moving toward a more nuanced approach to decision-making, this paper examines contamination, climate and costs as critical lenses for considering the public health, sustainability and economic dimensions of citywide sanitation

Read more

Summary

INTRODUCTION

The re-emergence of a citywide perspective on sanitation has focused much-needed attention on sustainable solutions that consider the full sanitation service chain for the entire urban population. Container-based sanitation (CBS) is a recent development that may provide opportunities to prevent contamination of groundwater and surface water, in dense low-income settlements These are mostly urine-separating toilets in which fecal matter is collected in a bag or container (replaced regularly by a local enterprise and taken away for further fecal sludge treatment) and diverted urine is typically disposed of in drains or sewers, or infiltrated into the soil (Mara, 2018; World Bank, 2019). Context-specific risk-based thinking is key, as promoted by the SSP approach, since population density, soil type, environmental conditions, stormwater hydraulics, groundwater contamination vulnerability and exposure pathways will inevitably differ from place to place Without this approach, there can be no sound basis for comparing sanitation options in terms of their potential to meet public health risk objectives

CLIMATE CHANGE
CONCLUSION
Findings
AUTHOR CONTRIBUTIONS
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.