Abstract

Sterile insect release (SIR) is used to suppress insect pest populations in agro-ecosystems, but its success hinges on the performance of the released insects and prevailing environmental conditions. For example, low temperatures dramatically reduce SIR efficacy in cooler conditions. Here, we report on the costs and benefits of thermal acclimation for laboratory and field responses of codling moth, Cydia pomonella. Using a component of field fitness, we demonstrate that low temperature acclimated laboratory-reared moths are recaptured significantly more (∼2–4×) under cooler conditions in the wild relative to warm-acclimated or control moths. However, improvements in low temperature performance in cold-acclimated moths came at a cost to performance under warmer conditions. At high ambient temperatures, warm-acclimation improved field performance relative to control or cold-acclimated moths. Laboratory assessments of thermal activity and their limits matched the field results, indicating that these laboratory assays may be transferable to field performance. This study demonstrates clear costs and benefits of thermal acclimation on laboratory and field performance and the potential utility of thermal pretreatments for offsetting negative efficacy in SIR programmes under adverse thermal conditions. Consequently, the present work shows that evolutionary principles of phenotypic plasticity can be used to improve field performance and thus possibly enhance pest control programmes seeking increased efficacy.

Highlights

  • Sterile insect release (SIR) has been used to suppress populations of agricultural insect pests and vectors of human and animal disease with varying levels of success

  • In pilot trials undertaken in the laboratory, we found that developmental thermal acclimation effects are similar for critical thermal limits when compared between irradiated and nonirradiated adult Codling moth (CM)

  • The developmental acclimation experiments showed that physiological changes in response to the thermal rearing environment carried over to the adult stage and persisted in the age-group of moths which would typically be used for release in SIR programmes

Read more

Summary

Introduction

Sterile insect release (SIR) has been used to suppress populations of agricultural insect pests and vectors of human and animal disease with varying levels of success. The SIR method for insect control typically involves sterilization (mainly through gamma radiation) of mass-reared insects which are released into the wild for mating with their wild counterparts. Apart from financial, social and political issues, field performance of laboratory-reared insects probably remains one of the greatest challenges to SIR success (Enserink 2007; Terblanche and Chown 2007; Simmons et al 2010). Codling moth (CM), Cydia pomonella (Lepidoptera: Tortricidae), is a major pest of global pome fruit production with huge economic losses suffered in cases where integrated control strategies are not implemented (Simmons et al 2010; Vreysen et al 2010). Emphasis on laboratory-reared moth maintenance and quality has increased in an effort to improve the efficacy of SIR programmes (Calkins and Parker 2005)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call