Abstract

BackgroundThe evolutionary dynamics of xenobiotic resistance depends on how resistance mutations influence the fitness of their bearers, both in the presence and absence of xenobiotic selection pressure. In cases of multiple resistance, these dynamics will also depend on how individual resistance mutations interact with one another, and on the xenobiotics applied against them. We compared Culex quinquefasciatus mosquitoes harbouring two resistance alleles ace-1R and KdrR (conferring resistance to carbamate and pyrethroid insecticides, respectively) to mosquitoes bearing only one of the alleles, or neither allele. Comparisons were made in environments where both, only one, or neither type of insecticide was present.ResultsEach resistance allele was associated with fitness costs (survival to adulthood) in an insecticide-free environment, with the costs of ace-1R being greater than for KdrR. However, there was a notable interaction in that the costs of harbouring both alleles were significantly less than for harbouring ace-1R alone. The two insecticides combined in an additive, synergistic and antagonistic manner depending on a mosquito's resistance status, but were not predictable based on the presence/absence of either, or both mutations.ConclusionInsecticide resistance mutations interacted to positively or negatively influence a mosquito's fitness, both in the presence or absence of insecticides. In particular, the presence of the KdrR mutation compensated for the costs of the ace-1R mutation in an insecticide-free environment, suggesting the strength of selection in untreated areas would be less against mosquitoes resistant to both insecticides than for those resistant to carbamates alone. Additional interactions suggest the dynamics of resistance will be difficult to predict in populations where multiple resistance mutations are present or that are subject to treatment by different xenobiotics.

Highlights

  • The evolutionary dynamics of xenobiotic resistance depends on how resistance mutations influence the fitness of their bearers, both in the presence and absence of xenobiotic selection pressure

  • In the absence of insecticide pressure, these resistance alleles are often associated with fitness costs that lead to them decreasing in frequency as resistant individuals are out-competed by susceptible rivals

  • Fitness costs associated with resistance alleles There were costs associated with insecticide resistance in an insecticide-free environment (Figure 1)

Read more

Summary

Introduction

The evolutionary dynamics of xenobiotic resistance depends on how resistance mutations influence the fitness of their bearers, both in the presence and absence of xenobiotic selection pressure. It is important to understand the evolutionary dynamics of resistance in both the presence and absence of xenobiotic selection pressure. This is because the extent to which a target population experiences these two types of environment will have a strong influence on the frequency of resistance and the rate at which it changes. In the absence of insecticide pressure, these resistance alleles are often associated with fitness costs that lead to them decreasing in frequency as resistant individuals are out-competed by susceptible rivals. It is important to identify traits that might be affected by resistance alleles and contexts in which they may influence fitness

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.