Abstract

Graph neural networks (GNNs) have attracted significant attention from the chemical science community because molecules can be represented as a featured graph. In particular, graph convolutional network (GCN) and its variants have been widely used and have shown a state-of-the-art performance in analyzing molecules, such as molecular label classification, drug discovery, and molecular property prediction. However, in molecular analysis, existing GCNs have two fundamental limitations: (1) information of the molecular scale is distorted and (2) global structures in a molecule are ignored. These limitations can seriously degrade the performance in the machine learning-based molecular analysis because the scale and global structure information of a molecule occasionally have a significant effect on the molecular properties. To overcome the limitations of existing GCNs, we comprehensively analyzed the structure of GCNs and developed a costless solution for the limitations of GCNs. To demonstrate the effectiveness of our solution, extensive experiments were conducted on various benchmark datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.