Abstract
Sesquiterpenes are a class of metabolites derived from plant species with immunomodulatory activity. In this study, we evaluated the effects of treatment with costic acid on inflammation, angiogenesis, and fibrosis induced by subcutaneous sponge implants in mice. One sponge disc per animal was aseptically implanted in the dorsal region of the mice and treated daily with costic acid (at concentrations of 0.1, 1, and 10 μg diluted in 10 μL of 0.5% DMSO) or 0.5% DMSO (control group). After 9 days of treatment, the animals were euthanized, and the implants collected for further analysis. Treatment with costic acid resulted in the reduction of the inflammatory parameters evaluated compared to the control group, with a decrease in the levels of inflammatory cytokines and chemokines (TNF, CXCL-1, and CCL2) and in the activity of MPO and NAG enzymes. Costic acid administration altered the process of mast cell degranulation. We also observed a reduction in angiogenic parameters, such as a decrease in the number of blood vessels, the hemoglobin content, and the levels of VEGF and FGF cytokines. Finally, when assessing implant-induced fibrogenesis, we observed a reduction in the levels of the pro-fibrogenic cytokine TGF-β1, and lower collagen deposition. The results of this study demonstrate, for the first time, the anti-inflammatory, anti-angiogenic, and anti-fibrotic effects of costic acid in an in vivo model of chronic inflammation and reinforce the therapeutic potential of costic acid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.