Abstract

Synthesis of ultrafine barium titanate (BT) nanoparticles using a simple cost effective precipitation method and their structural and morphological changes are outline in this paper. In actual, BTO precipitate was subjected to centrifuge, washing and heating processes to obtain BT nanoparticles. Special emphasis was given to the concentration of precursor (barium nitrate) and capping ligand (PVP) while synthesizing the material because they are least studied and found a deep influence on the size of BT particles. To study their effect on the properties of BT samples the concentration of barium nitrate and PVP were varied from 0.005 to 0.05 M and 0.001 to 0.008 M respectively. The structure of these nanoparticles was determined using the X-ray diffraction and FTIR techniques. The X-ray diffraction demonstrated the formation of pure tetragonal phase of BT with average crystallite size, strain and dislocation density of ∼13 nm, 2.8×10−3 and 6×1015 m−2 respectively. The surface morphologies of the different BT samples were viewed through the FESEM. Nearly spherical grains with some sort of fusing (agglomeration) have been observed at higher concentrations of both the barium precursor and PVP. FTIR spectra signified the presence of Ti-O bond at 490 cm−1 and 1420 cm−1 confirming the formation of BT. Thin films of the as-synthesized BT nanoparticles can be employed for the sensing application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call