Abstract
A simple, efficient and reliable analytical method was developed and used for the determination of the fluvoxamine drug (FLV) in pharmaceutical preparations and biological fluids. The method is based on the cost-effective screen-printed platform for the potential transduction of the drug. Host-tailored molecular imprinting polymer (MIP) was integrated with the potentiometric platform as a recognition receptor, in which FLV, acrylamide (AAm), ethylene glycol dimethacrylate (EGDMA) and acetonitrile were used as a template, functional monomer, cross-linker, and solvent, respectively. MIP particles were dispersed in plasticized poly (vinyl chloride) (PVC) and the membrane was drop-casted on carbon screen-printed electrode. The MIP, in addition to non-imprinted polymers (NIP), was characterized and the binding experiment revealed high affinity and adsorption capacity of MIP towards FLV. The proposed sensor displayed near-Nernstian cationic slope of 55.0 ± 0.8 mV/decade (r2 = 0.999) with a low detection limit of 4.8 × 10−6 mol/L over a wide pH range (3.0–8.5). The electrochemical features of the proposed sensors including electrochemical impedance spectroscopy (EIS) and chronopotentiometry measurements (CP) in the presence of multi-walled carbon nanotubes (MWCNTs) as a solid contact transducer were also investigated. The applications of the proposed sensor for the determination of FLV in different dosage forms with recovery values (98.8%–101.9%) and (97.4%–101.1%), respectively compared with the reference HPLC method with acceptedFandt-student tests values at the 95% confidence level.
Highlights
Depression has a massive impact as a disability, which is a common and invalidating mental illness affecting approximately 2.5% of the general population as shown in the last guidelines update of the world health organization (WHO) in 2018 [1,2]
The last peak attributed to the presence of O–H of the carboxylic group in maleic acid and the broadband confirms the presence of hydrogen bond
A new applicable potentiometric sensor of FLV based on molecular imprinting polymer (MIP) ionophore was developed
Summary
Depression has a massive impact as a disability, which is a common and invalidating mental illness affecting approximately 2.5% of the general population as shown in the last guidelines update of the world health organization (WHO) in 2018 [1,2]. It harms a person’s behavior and their social consequences in terms of reduced employment and psychosocial impairment. Research that moreshows severethat forms of depression areofassociated with changes some changes to some hormones besides the chemical message system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.