Abstract

Traditional electro-Fenton systems must continuously supply oxygen to the cathode, which leads to extensive volatilisation of benzene in solutions. In this study, we adopted a floating cathode electro-Fenton system without bubbling oxygen into the solution to treat benzene-containing wastewater. The effects of the floating cathode position and main reaction parameters on benzene degradation were analysed, and the degradation cost was estimated. The results indicated that the electro-Fenton system with floating cathode could effectively degrade benzene in solutions. For the cathode, the complete utilisation of air and oxygen released from the anode was crucial. The benzene degradation rate increased with an increase in benzene concentrations. Additionally, pH mainly affected the existing ionic state of iron and production ratio of active substances. The current intensity significantly influenced the reaction activity. Using the floating cathode electro-Fenton method, the benzene removal ratio in the solution could reach 74.80% after 60 min under the optimum reaction conditions. For the floating cathode electro-Fenton system, the cost of treating benzene-containing sewage per cubic metre was $1.2187, which is significantly lower than that for traditional electro-Fenton technology ($1.4000). Hence, the floating cathode electro-Fenton system is an economical and efficient method for benzene degradation in solutions.

Highlights

  • Benzene (B), toluene (T), ethylbenzene (E), and paraxylene (X) (BTEX) are found primarily in crude oil and petroleum products

  • Because benzene has strong volatility, the traditional oxygen supply method leads to strong benzene volatilisation. To solve these key problems, we proposed a floating cathode electro-Fenton process, which can result in the formation of a three-phase interface, synergistic utilisation of oxygen generated using air and anode, and improvement in the oxygen utilisation rate

  • We investigated the effects of reaction conditions, such as initial benzene concentration, Fe(II) concentration, pH, current intensity, and plate distance, on benzene degradation and estimated the process cost

Read more

Summary

Introduction

Benzene (B), toluene (T), ethylbenzene (E), and paraxylene (X) (BTEX) are found primarily in crude oil and petroleum products. With the development of petroleum and petrochemical industries, the output and consumption of BTEX are increasing annually (Bustillo-Lecompte et al ). BTEX compounds, represented by benzene, have become one of the most abundant chemicals worldwide. The release of large amounts of benzene poses a great threat to the health of humans. Benzene is the most toxic among all the BTEX compounds because it can be rapidly and effectively absorbed and widely distributed throughout the body. Benzene exhibits blood toxicity and genotoxicity and has been reported as one of the top 100 chemicals in the list of priority hazardous substances by the US Environmental Protection Agency (Mitra & Roy ). The development of a green and efficient benzene treatment technology is urgently required

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.