Abstract
The aim of this study is to examine how the options for producing electricity, fuels, and heat in a carbon-constrained world affect the cost-effectiveness of a range of fuels and propulsion technologies in the transportation sector. GET 7.0, a global energy system model with five end-use sectors, is used for the analysis. We find that an energy system dominated either by solar or by nuclear tends to make biofuels in plug-in hybrids cost-effective. If coal with carbon capture and storage (CCS) dominates the energy system, hydrogen cars, rather than plug-in hybrids tend to become cost-effective. Performing a Monte Carlo simulation, we then show that the general features of our results hold for a wide range of assumptions for the costs of vehicle propulsion technologies (e.g., batteries and fuel cells). However, sufficiently large changes in say the battery costs may overturn the impact of changes in the energy supply system, so that plug-in hybrid vehicles become cost-effective even if coal with CCS dominate the energy supply. We conclude that analyses of future energy carriers and propulsion technologies need to consider developments in the energy supply system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.