Abstract

Constraint propagation is aimed at removing from variable domains combinations of values which cannot appear in any consistent solution. Pruning derives from feasibility reasoning. When coping with optimization problems, pruning can be performed also on the basis of costs, i.e., optimality reasoning. Propagation can be aimed at removing combination of values which cannot lead to solutions whose cost is better then the best one found so far. For this purpose, we embed in global constraints optimization components representing suitable relaxations of the constraint itself. These components provide efficient Operations Research algorithms computing the optimal solution of the relaxed problem and a gradient function representing the estimated cost of each variable-value assignment. We exploit these pieces of information for pruning and for guiding the search. We have applied these techniques to a couple of ILOG Solver global constraints (a constraint of difference and a path constraint) and tested the approach on a variety of combinatorial optimization problems such as Timetabling, Travelling Salesman Problems and Scheduling Problems with setup. Comparisons with pure Constraint Programming approaches and related literature clearly show the benefits of the proposed approach. By using cost-based filtering in global constraints, we can optimally solve problems that are one order of magnitude greater than those solved by pure CP approaches, and we outperform other hybrid approaches integrating OR techniques in Constraint Programming.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call