Abstract
Cost-based filtering is a novel approach that combines techniques from Operations Research and Constraint Programming to filter from decision variable domains values that do not lead to better solutions [7]. Stochastic Constraint Programming is a framework for modeling combinatorial optimization problems that involve uncertainty [9]. In this work, we show how to perform cost-based filtering for certain classes of stochastic constraint programs. Our approach is based on a set of known inequalities borrowed from Stochastic Programming -- a branch of OR concerned with modeling and solving problems involving uncertainty. We discuss bound generation and cost-based domain filtering procedures for a well-known problem in the Stochastic Programming literature, the static stochastic knapsack problem. We also apply our technique to a stochastic sequencing problem. Our results clearly show the value of the proposed approach over a pure scenario-based Stochastic Constraint Programming formulation both in terms of explored nodes and run times.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.