Abstract

Let \(N=\{1,\dots ,n\}\) be a set of customers who want to buy a single homogenous goods in market. Let \(q_i>0\) be the quantity that \(i\in N\) demands, \(q=(q_1,\dots ,q_n)\) and \(q_S=\sum _{i\in S}q_i\) for \(S\subseteq N\). If f(s) is a (increasing and concave) cost function, then it yields a cooperative game (N, f, q) by defining characteristic function \(v(S)=f(q_S)\) for \(S\subseteq N\). We now consider the way of taking packages of goods by customers and define a communication graph L on N, in which i and j are linked if they can take packages for each other. So if i and j are connected, then a package can be delivered from i to j by some intermediators. We thus admit any connected subset as a feasible coalition, and obtain a game (N, f, q, L) by defining characteristic function \(v_L(S)=\sum _{R\in S/L}f(q_R)\) for \(S\subseteq N\), where S / L is the family of induced components (maximal connected subset) in S. It is shown that there is an allocation (cost shares) \(x=(x_1,\dots ,x_n)\) from the core for the game (\(x_S\le v_L(S)\) for any \(S\subseteq N\)) such that x satisfies Component Efficiency and Ranking for Unit Prices. If f(s) and q satisfy some further condition, then there is an allocation x from the core such that x satisfies Component Efficiency, and \(x_i \le x_j\) and \(\frac{x_i}{q_i} \ge \frac{x_j}{q_j}\) if \(q_i \le q_j\) for i and j in the same component of N.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call