Abstract
Combined heat, cooling and power (CHCP) systems are interesting for the supply of different energy services in urban districts and in large buildings. CHCP systems utilize a fuel's energy to a greater extent, because the cogenerated heat can be used for heating in winter as well as for cooling in summer with an absorption refrigerator. The use of thermal energy storage (TES) provides the additional advantage of covering variable thermal demands while the production system operates continuously at nominal conditions. Thus, energy supply systems integrating the technologies of cogeneration, absorption refrigeration and thermal storage can provide substantial benefits from economic, energetic and environmental viewpoints. In this paper an optimization model is developed, using mixed integer linear programming (MILP), to determine the preliminary design of CHCP systems with thermal storage. The objective function to be minimized is the total annual cost. Taking into account the legal constraints imposed on cogeneration systems in Spain, the optimization model is applied to design a system providing energy services for a set of buildings constituted of 5000 apartments located in the city of Zaragoza (Spain). The effect of legal constraints in the design and operation of CHCP systems is highlighted in this study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.