Abstract

The paper presents an estimation of the optimum cost of an isolated foundation following the safety and serviceability guidelines of Indian Standard (IS) 456:2000. Two adaptable optimization algorithms are developed for the first time to optimize the cost of any type of isolated footing design. Two optimization methods, i.e., constrained binary-coded genetic algorithm, with static penalty function approach and unified particle swarm optimization are developed in MATLAB compliant for optimal design of any isolated foundations. The objective function formulated is based on the total cost of footing. This includes the cost of concrete, the cost of steel and cost of formwork. The design variables which influence the total cost of footing are plan area and depth of footing and area of flexural reinforcement at moment critical sections. The footing design algorithm is developed according to the biaxial-isolated rectangular footing as per IS codes. The constraints, e.g., dimension of footing, restriction on bending, shear stresses and displacements, are considered in the footing design algorithm which acted as a subroutine to the developed optimization programs. Four different numerical examples have been solved to evaluate the versatility of the developed method. A comparison study has been done to observe the efficacy of both the optimization methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call