Abstract

The paper presents the cost optimization of composite floor trusses composed from a reinforced concrete slab of constant depth and steel trusses consisting of hot rolled channel sections. The optimization was performed by the nonlinear programming approach, NLP. Accordingly, a NLP optimization model for composite floor trusses was developed. An accurate objective function of the manufacturing material, power and labour costs was proposed to be defined for the optimization. Alongside the costs, the objective function also considers the fabrication times, and the electrical power and material consumption. Composite trusses were optimized according to Eurocode 4 for the conditions of both the ultimate and the serviceability limit states. A numerical example of the optimization of the composite truss system presented at the end of the paper demonstrates the applicability of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.