Abstract

This paper aims to optimize the cost of a battery and supercapacitor hybrid energy storage system (HESS) for dispatching solar power at one-hour increments for an entire day for megawatt-scale grid-connected photovoltaic (PV) arrays. A low-pass filter (LPF) is utilized to allocate the power between a battery and a supercapacitor (SC). The cost optimization of the HESS is calculated based on the time constant of the LPF through extensive simulations in a MATLAB/SIMULINK environment. Curve fitting and Particle Swarm Optimization (PSO) techniques are implemented to seek the optimum value of the LPF time constant. A fuzzy logic controller as a function of battery state of charge is developed to estimate the grid reference power for each one-hour dispatching period. Since the ambient temperature and PV cell temperature are different, this study also considers the relationship between them and presents their effects on energy storage cost calculations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.