Abstract

The increasing costs of energy encourage the development of cost-efficient building cooling systems. Based on a thermal model of a commercial building and its cooling system, the cost-optimal design of a vapor compression system and an incorporated ice storage is determined. Special emphasis is placed on the refrigeration machine and its interaction with the thermal capacity of the building. The implementation as a mixed integer linear programming problem allows the evaluation of the optimal system operation for an entire year in approximately 50s on a desktop computer. Based on these results, the design of the optimal systems is determined for various electricity tariff schemes. Therefore, a model for variable electricity rates is introduced including costs for control reserve power. Compared to the cooling system without storage, the system including an optimally designed ice storage achieves lifetime cost reductions of approximately 8% by reducing the operational costs and the investment costs for the downsized refrigeration machine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.