Abstract
In recent years, with the growing number of EV charging stations integrated into the grid, optimizing the aggregated EV load based on individual EV flexibility has drawn aggregators’ attention as a way to regulate the grid and provide grid services, such as day-ahead (DA) demand responses. Due to the forecast uncertainty of EV charging timings and charging energy demands, the actual delivered demand response is usually different from the DA bidding capacity, making it difficult for aggregators to profit from the energy market. This paper presents a two-layer online feedback control algorithm that exploits the EV flexibility with controlled EV charging timings and energy demands. Firstly, the offline model optimizes the EV dispatch considering demand charge management and energy market participation, and secondly, model predictive control is used in the online feedback model, which exploits the aggregated EV flexibility region by reducing the charging energy based on the pre-decided service level for demand response in real time (RT). The proposed algorithm is tested with one year of data for 51 EVs at a workplace charging site. The results show that with a 20% service level reduction in December 2022, the aggregated EV flexibility can be used to compensate for the cost of EV forecast errors and benefit from day-ahead energy market participation by USD 217. The proposed algorithm is proven to be economically practical and profitable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.