Abstract

BackgroundMultiple organ failure, wasting, increased morbidity, and mortality following acute illness complicates the health span of patients surviving sepsis. Persistent inflammation has been implicated, and it is proposed that insulin signaling contributes to persistent inflammatory signaling during the recovery phase after sepsis. However, mechanisms are unknown and suitable pre-clinical models are lacking. We therefore developed a novel Drosophila melanogaster model of sepsis to recapitulate the clinical course of sepsis, explored inflammation over time, and its relation to impaired mobility, metabolic disturbance, and changes in lifespan.MethodsWe used wild-type (WT), Drosomycin-green fluorescent protein (GFP), and NF-κB-luc reporter male Drosophila melanogaster 4–5 days of age (unmanipulated). We infected Drosophila with Staphylococcus aureus (infected without treatment) or pricked with aseptic needles (sham). Subsets of insects were treated with oral linezolid after the infection (infected with antibiotics). We assessed rapid iterative negative geotaxis (RING) in all the groups as a surrogate for neuromuscular functional outcome up to 96 h following infection. We harvested the flies over the 7-day course to evaluate bacterial burden, inflammatory and metabolic pathway gene expression patterns, NF-κB translation, and metabolic reserve. We also followed the lifespan of the flies.ResultsOur results showed that when treated with antibiotics, flies had improved survival compared to infected without treatment flies in the early phase of sepsis up to 1 week (81 %, p = 0.001). However, the lifespan of infected with antibiotics flies was significantly shorter than that of sham controls (p = 0.001). Among infected with antibiotic sepsis survivors, we observed persistent elevation of NF-κB in the absence of any obvious infection as shown by culturing flies surviving sepsis. In the same group, geotaxis had an early (18 h) and sustained decline compared to its baseline. Geotaxis in infected with antibiotics sepsis survivors was significantly lower than that in sham and age-matched unmanipulated flies at 18 and 48 h. Expression of antimicrobial peptides (AMP) remained significantly elevated over the course of 7 days after sepsis, especially drosomycin (5.7-fold, p = 0.0145) on day 7 compared to that of sham flies. Infected with antibiotics flies had a trend towards decreased Akt activation, yet their glucose stores were significantly lower than those of sham flies (p = 0.001). Sepsis survivors had increased lactate levels and LDH activity by 1 week, whereas ATP and pyruvate content was similar to that of the sham group.ConclusionsIn summary, our model mimics human survivors of sepsis with persistent inflammation, impaired motility, dysregulated glucose metabolism, and shortened lifespan.Electronic supplementary materialThe online version of this article (doi:10.1186/s40635-016-0075-4) contains supplementary material, which is available to authorized users.

Highlights

  • Multiple organ failure, wasting, increased morbidity, and mortality following acute illness complicates the health span of patients surviving sepsis

  • Our results showed that when treated with antibiotics, flies had improved survival compared to infected without treatment flies in the early phase of sepsis up to 1 week (81 %, p = 0.001)

  • Infected with antibiotics flies had a trend towards decreased Akt activation, yet their glucose stores were significantly lower than those of sham flies (p = 0.001)

Read more

Summary

Introduction

Multiple organ failure, wasting, increased morbidity, and mortality following acute illness complicates the health span of patients surviving sepsis. Sepsis is a significant global health problem, with more than 20 million patients affected annually and a direct economic costs calculated in $17 billion [1] This disease imposes additional costs to the society, families, and patients, including lost days of work, absence from school, and long-term disabilities [2]. Sepsis survivors frequently incur a dramatic decline in functional capacity and quality of life that can persist for years and carry a higher long-term risk of subsequent morbidity and mortality compared to age-matched controls, such as increased rates of cardiovascular events, new infections, cancer, and neurocognitive or muscular dysfunction, metabolic disturbances, and shortened lifespan [4–8]. In Drosophila, infection models have been limited to host-pathogen interactions in the acute phase and do not address inflammatory, motility, metabolic disturbances, and changes in lifespan observed in patients surviving sepsis [10]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.