Abstract

BackgroundHouse improvement (HI) to prevent mosquito house entry, and larval source management (LSM) targeting aquatic mosquito stages to prevent development into adult forms, are promising complementary interventions to current malaria vector control strategies. Lack of evidence on costs and cost-effectiveness of community-led implementation of HI and LSM has hindered wide-scale adoption. This study presents an incremental cost analysis of community-led implementation of HI and LSM, in a cluster-randomized, factorial design trial, in addition to standard national malaria control interventions in a rural area (25,000 people), in southern Malawi.MethodsIn the trial, LSM comprised draining, filling, and Bacillus thuringiensis israelensis-based larviciding, while house improvement (henceforth HI) involved closing of eaves and gaps on walls, screening windows/ventilation spaces with wire mesh, and doorway modifications. Communities implemented all interventions. Costs were estimated retrospectively using the ‘ingredients approach’, combining ‘bottom-up’ and ‘top-down approaches’, from the societal perspective. To estimate the cost of independently implementing each intervention arm, resources shared between trial arms (e.g. overheads) were allocated to each consuming arm using proxies developed based on share of resource input quantities consumed. Incremental implementation costs (in 2017 US$) are presented for HI-only, LSM-only and HI + LSM arms. In sensitivity analyses, the effect of varying costs of important inputs on estimated costs was explored.ResultsThe total economic programme costs of community-led HI and LSM implementation was $626,152. Incremental economic implementation costs of HI, LSM and HI + LSM were estimated as $27.04, $25.06 and $33.44, per person per year, respectively. Project staff, transport and labour costs, but not larvicide or screening material, were the major cost drivers across all interventions. Costs were sensitive to changes in staff costs and population covered.ConclusionsIn the trial, the incremental economic costs of community-led HI and LSM implementation were high compared to previous house improvement and LSM studies. Several factors, including intervention design, year-round LSM implementation and low human population density could explain the high costs. The factorial trial design necessitated use of proxies to allocate costs shared between trial arms, which limits generalizability where different designs are used. Nevertheless, costs may inform planners of similar intervention packages where cost-effectiveness is known.Trial registration Not applicable. The original trial was registered with The Pan African Clinical Trials Registry on 3 March 2016, trial number PACTR201604001501493

Highlights

  • House improvement (HI) to prevent mosquito house entry, and larval source management (LSM) targeting aquatic mosquito stages to prevent development into adult forms, are promising complementary interventions to current malaria vector control strategies

  • In the trial, the incremental economic costs of community-led HI and LSM implementation were high compared to previous house improvement and LSM studies

  • The factorial trial design necessitated use of proxies to allocate costs shared between trial arms, which limits generalizability where different designs are used

Read more

Summary

Introduction

House improvement (HI) to prevent mosquito house entry, and larval source management (LSM) targeting aquatic mosquito stages to prevent development into adult forms, are promising complementary interventions to current malaria vector control strategies. This study presents an incremental cost analysis of community-led implementation of HI and LSM, in a cluster-randomized, factorial design trial, in addition to standard national malaria control interventions in a rural area (25,000 people), in southern Malawi. Despite significant reductions in cases and deaths between 2000 and 2015, Plasmodium falciparum malaria remains an important global health problem, especially in Africa. This reduction was largely attributed to vector control interventions: insecticide-treated nets (ITN) and indoor residual spraying (IRS) [1, 2]. Use of interventions with different modes of action that target both aquatic and adult mosquito stages could mitigate against these challenges and ensure progress towards current control and elimination targets is sustained [5,6,7,8]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call