Abstract

In this note, we deal with parameter estimation methods of chaotic systems. The parameter estimation of the chaotic systems has some significant issues due to their butterfly effects. It can be formulated as an optimization problem and needs a suitable cost function. In this paper, we propose a new cost function based on a hidden Markov model which is a statistical tool for modeling of time series data. It can model dynamical characteristics of the chaotic systems. Moreover, the use of dynamical features of their strange attractors is investigated to achieve a better cost function in the procedure of parameter estimation. Our experimental results indicate the success of the proposed cost function in the one-dimensional parameter estimation of a new four-dimensional chaotic system and Lorenz system as a well-known three-dimensional chaotic system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.