Abstract

BackgroundA close match of the HLA alleles between donor and recipient is an important prerequisite for successful unrelated hematopoietic stem cell transplantation. To increase the chances of finding an unrelated donor, registries recruit many hundred thousands of volunteers each year. Many registries with limited resources have had to find a trade-off between cost and resolution and extent of typing for newly recruited donors in the past. Therefore, we have taken advantage of recent improvements in NGS to develop a workflow for low-cost, high-resolution HLA typing.ResultsWe have established a straightforward three-step workflow for high-throughput HLA typing: Exons 2 and 3 of HLA-A, -B, -C, -DRB1, -DQB1 and -DPB1 are amplified by PCR on Fluidigm Access Array microfluidic chips. Illumina sequencing adapters and sample specific tags are directly incorporated during PCR. Upon pooling and cleanup, 384 samples are sequenced in a single Illumina MiSeq run. We developed “neXtype” for streamlined data analysis and HLA allele assignment. The workflow was validated with 1140 samples typed at 6 loci. All neXtype results were concordant with the Sanger sequences, demonstrating error-free typing of more than 6000 HLA loci. Current capacity in routine operation is 12,000 samples per week.ConclusionsThe workflow presented proved to be a cost-efficient alternative to Sanger sequencing for high-throughput HLA typing. Despite the focus on cost efficiency, resolution exceeds the current standards of Sanger typing for donor registration.

Highlights

  • A close match of the Human leukocyte antigen (HLA) alleles between donor and recipient is an important prerequisite for successful unrelated hematopoietic stem cell transplantation

  • HLA-specific DNA amplification by PCR is performed on Fluidigm Access Array microfluidic chips [8]

  • Before application to the Fluidigm chip, the 48 samples are mixed with primer sets containing unique indexing nucleotide sequences and adapter sequences to allow direct sequencing of the PCR products on the MiSeq without the need of additional library preparation steps (Figure 3)

Read more

Summary

METHODOLOGY ARTICLE

Vinzenz Lange1†, Irina Böhme1*†, Jan Hofmann, Kathrin Lang, Jürgen Sauter, Bianca Schöne, Patrick Paul, Viviane Albrecht, Johanna M Andreas, Daniel M Baier, Jochen Nething, Ulf Ehninger, Carmen Schwarzelt, Julia Pingel, Gerhard Ehninger and Alexander H Schmidt

Results
Conclusions
Background
Results and discussion
Conclusion
Methods
15. Erlich H
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.