Abstract

The basal ganglia (BG) comprise multiple subcortical nuclei, which are responsible for cognition and other functions. Developing a brain–machine interface (BMI) demands a suitable solution for the real-time implementation of a portable BG. In this study, we used a digital hardware implementation of a BG network containing 256 modified Izhikevich neurons and 2048 synapses to reliably reproduce the biological characteristics of BG on a single field programmable gate array (FPGA) core. We also highlighted the role of Parkinsonian analysis by considering neural dynamics in the design of the hardware-based architecture. Thus, we developed a multi-precision architecture based on a precise analysis using the FPGA-based platform with fixed-point arithmetic. The proposed embedding BG network can be applied to intelligent agents and neurorobotics, as well as in BMI projects with clinical applications. Although we only characterized the BG network with Izhikevich models, the proposed approach can also be extended to more complex neuron models and other types of functional networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.