Abstract

This paper investigates a cellular network powered by a micro-grid (MG) in the context of green communications, which integrates the conventional generators, energy storage devices, and renewable energy generators, so as to supply electricity to base stations (BSs). Under this model, we study the efficiency aspect of the MG-powered cellular network from the economical perspective. Specifically, the concept of cost efficiency (CE) is employed to measure the sum rate delivered per dollar. Then, our goal is to maximize this CE subject to a series of constraints, including multi-variable coupling and time coupling constraints. Particularly, we assume the zero-forcing beamforming scheme employed by the BSs. To address this established fractional CE optimization problem, we first apply the Dinkelbach method, and then propose a low-complexity algorithm based on the alternating direction method of multipliers approach to jointly schedule power generation in the MG and optimize transmit power for BSs. We introduce a number of auxiliary variables to design a special variable splitting scheme so that the coupling inequality constraints can be separable among two variable sets. Consequently, the proposed algorithm only incorporates simple updates in each step and thus can be implemented in a parallel and completely distributed fashion. Simulation results demonstrate the convergence and energy scheduling performance of the proposed algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.