Abstract
Mycorrhizal symbiosis involves reciprocal transfer of carbon and nutrients between shoots on the one hand and roots colonized by symbiotic fungi on the other. Mycorrhizas may improve the mineral nutrient acquisition rates, but simultaneously increase the belowground demand for carbon. Mycorrhizal plants will have a selective advantage over non‐mycorrhizal ones if they are more cost‐efficient in terms of carbon cost per unit of acquired mineral nutrient. However, we demonstrate here in a simple model system that this is not a necessary condition. Mycorrhizas may evolve even when they are less cost‐efficient, provided that photosynthesis and/or growth are strongly nutrient‐limited. This result implies a unique hypothesis for the evolution of mycorrhizal associations which may be inherently cost‐inefficient as compared to plant roots. Such symbioses may have evolved when the superior nutrient acquisition rate of fungi combines with the relatively high photosynthetic nutrient use efficiency of the host plant. Consequently, provided that mycorrhizas are really cost‐inefficient, the selective advantage of mycorrhizal plants will disappear when an increase in the nutrient acquisition rate is not associated with a sufficiently high nutrient use efficiency of photosynthesis, as at high soil nutrient levels or due to a loss of leaf area, shading or low temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.