Abstract

Background Standard influenza vaccines are produced using egg-based manufacturing methods. Through the process, the resulting egg-adapted viral strains may differ from the selected vaccine strain. Cell-derived influenza vaccine manufacturing prevents egg-adaptation of the antigen which can improve vaccine effectiveness. We evaluated the cost-effectiveness of quadrivalent cell-derived influenza vaccine (QIVc) versus an egg-based quadrivalent influenza vaccine (QIVe) in preventing seasonal influenza from German societal and payer perspectives. Methods Adapted version of the individual-based dynamic 4Flu transmission model was combined with a decision-tree to calculate the impact of QIVc versus QIVe on influenza over 20 seasons in Germany. Egg-adaptation, resulting in lower effectiveness of QIVe versus QIVc towards the H3N2 influenza strain, is sourced from a US retrospective study and assumed in 100% (base case) or 55% (conservative scenario) of years. Influenza-related probabilities of outpatient visits, hospitalizations, productivity loss, and mortality, with associated (dis)utilities/costs, were extracted from literature. Costs and outcomes were discounted 3.0%/year. Results Replacing QIVe with QIVc in subjects aged ≥ 9 years can annually prevent 167,265 symptomatic cases, 51,114 outpatient visits, 2,091 hospitalizations, and 103 deaths in Germany. The annual number of quality-adjusted life-years (QALYs) increased by 1,628 and healthcare costs decreased by €178 M from societal perspective. From payer perspective, the incremental cost-effectiveness ratio was €2,285 per QALY. Scenario analyses confirmed results robustness. Conclusions The use of QIVc compared to QIVe, in the German Immunization Program, could significantly prevent outpatient visits and hospitalizations and would enable substantial savings from a societal perspective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.