Abstract

SummaryRomosozumab is a novel bone-building drug that reduces fracture risk. This health economic analysis indicates that sequential romosozumab-to-alendronate can be a cost-effective treatment option for postmenopausal women with severe osteoporosis at high risk of fracture.PurposeTo estimate the cost-effectiveness of sequential treatment with romosozumab followed by alendronate (“romosozumab-to-alendronate”) compared with alendronate alone in patients with severe osteoporosis at high risk of fracture in Sweden.MethodsA microsimulation model with a Markov structure was used to simulate fractures, costs, and quality-adjusted life years (QALYs), for women treated with romosozumab-to-alendronate or alendronate alone. Patients aged 74 years with a recent major osteoporotic fracture (MOF) were followed from the start of treatment until the age of 100 years or death. Treatment with romosozumab for 12 months was followed by alendronate for up to 48 months or alendronate alone with a maximum treatment duration of 60 months. The analysis had a societal perspective. Efficacy of romosozumab and alendronate were derived from phase III randomized controlled trials. Resource use and unit costs were collected from the literature. Cost-effectiveness was estimated using incremental cost-effectiveness ratio (ICER) with QALYs as effectiveness measures.ResultsThe base case analysis showed that sequential romosozumab-to-alendronate treatment was associated with 0.089 additional QALYs at an additional cost of €3002 compared to alendronate alone, resulting in an ICER of €33,732. At a Swedish reference willingness-to-pay per QALY of €60,000, romosozumab-to-alendronate had a 97.9% probability of being cost-effective against alendronate alone. The results were most sensitive to time horizon, persistence assumptions, patient age, and treatment efficacy.ConclusionThe results of this study indicate that sequential romosozumab-to-alendronate can be a cost-effective treatment option for postmenopausal women with severe osteoporosis at high risk of fracture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.