Abstract

Proton therapy in pediatrics may improve the risk/benefit profile of radiotherapy at a greater upfront financial cost, but it may prove to be cost effective if chronic medical complications can be avoided. Tools to assist with decision making are needed to aid in selecting pediatric patients for protons, and cost-effectiveness models can provide an objective method for this. A Markov cohort-simulation model was developed to assess the expected costs and effectiveness for specific radiation doses to the hypothalamus with protons versus photons in pediatric patients. Costing data included cost of investment and the diagnosis and management of growth hormone deficiency. Longitudinal outcomes data were used to inform risk parameters for the model. With costs in 2012 US dollars and effectiveness measured in quality-adjusted life years, incremental cost-effectiveness ratios were used to measure outcomes. Proton therapy was cost effective for some scenarios based on the difference in hypothalamic sparing. Although some scenarios were not cost effective, others were not only cost effective for proton therapy but also demonstrated that protons were cost saving compared with photons. The current results provide the first evidence-based guide for identifying children with brain tumors who may benefit the most from proton therapy with respect to endocrine dysfunction. Proton therapy may be more cost effective for scenarios in which radiation dose to the hypothalamus can be spared, but protons may not be cost effective when tumors are involving or directly adjacent to the hypothalamus if there is a high dose to this structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call