Abstract

The introduction of artificial intelligence into the medical field has improved the diagnostic capabilities of physicians. However, few studies have analyzed the economic impact of employing artificial intelligence technologies in the clinical environment. This study evaluated the cost-effectiveness of a computer-assisted diagnosis (CADx) system designed to support clinicians in differentiating early gastric cancers from non-cancerous lesions in Japan, where the universal health insurance system was introduced. The target population to be used for the CADx was estimated as those with moderate to severe gastritis caused by Helicobacter pylori infection. Decision trees with Markov models were built to analyze the cumulative cost-effectiveness of using CADx relative to the pre-artificial intelligence status quo, a condition reconstructed from data in published reports. After conducting a base-case analysis, we performed sensitivity analyses by modifying several parameters. The primary outcome was the incremental cost-effectiveness ratio. Compared with the status quo as represented in the base-case analysis, the incremental cost-effectiveness ratio of CADx in the Japanese market was forecasted to be 11,093 USD per quality-adjusted life year. The sensitivity analyses demonstrated that the expected incremental cost-effectiveness ratios were within the willingness-to-pay threshold of 50,000 USD per quality-adjusted life year when the cost of the CAD was less than 104 USD. Using CADx for EGCs may decrease their misdiagnosis, contributing to improved cost-effectiveness in Japan.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call