Abstract
Demand side management (DSM) is a great challenge for new power systems based on renewable energy. Vehicle-to-Building (V2B) and Energy Storage Systems (ESS) are two important and effective tools. However, existing studies lack the sizing method of bidirectional chargers and ESSs. This study has proposed a cost-effective sizing method of V2B chargers and ESSs during the planning stage. By developing a linear model that clusters electric vehicle users based on mobility patterns and employing mixed integer linear programming for day-ahead control strategies, the method minimizes the dynamic payback period of initial investments. Tested in an office park featuring photovoltaic generation, the optimal configuration of 50% V2B chargers and 1 ESS significantly reduces cumulative peak-hour load and peak power by 51.3% and 42.4%, respectively. The price and rated power of EV chargers on the optimal sizing result are also investigated, providing guidance for the design and operation of micro-grid systems. Furthermore, the study suggests further exploration into actual data acquisition, real-time control strategy enhancement, and comprehensive user behavior for broader application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.