Abstract

An optimization methodology is developed for determining the most cost-effective maintenance and rehabilitation (M&R) activities for each pavement section in a highway pavement network, along an extended planning horizon. A multi-dimensional 0–1 knapsack problem with M&R strategy-selection and precedence-feasibility constraints is formulated to maximize the total dollar value of benefits associated with the selected pavement improvement activities. The solution approach is a hybrid dynamic programming and branch-and-bound procedure. The imbedded-state approach is used to reduce multi-dimensional dynamic programming to a one-dimensional problem. Bounds at each stage are determined by using Lagrangian optimization to solve a relaxed problem by means of a sub-gradient optimization method. Tests for the proposed solution methodology are conducted using typical data obtained from the Texas Department of Transportation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call