Abstract

We report the observation of multimode exciton-polaritons in single-crystalline microplates of a two-dimensional (2D) layered metal-organic framework (MOF), which can be synthesized through a facile solvothermal approach, thereby eliminating all fabrication complexities usually involved in the construction of polariton cavities. With a combination of experiments and theoretical modeling, we have found that the exciton-polaritons are formed at room temperature as a result of a strong coupling between Fabry-Perot cavity modes formed inherently by two parallel surfaces of a microplate and Frenkel excitons provided by the 2D layers of dye molecular linkers in the MOF. Flexibility in rational selection of dye linkers for synthesizing such MOFs renders a large-scale, low-cost production of solid-state, micro-exciton-polaritonic devices operating in the visible and near-infrared range. Our work introduces MOFs as a new class of potential materials to explore polariton-related quantum phenomena in a cost-effective manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.