Abstract
This paper investigates cost-efficient ways of accurately numerically simulating the aerodynamic phenomena around the DrivAer model, a well-established conventional car reference model created by the Technical University of Münich (TUM). After processing the geometry of the Fastback configuration, a high quality ANSYS Poly-Hexcore mesh was constructed in ANSYS Fluent Meshing, reducing the number of cells needed for a highly accurate simulation. The grid independence study was conducted with the GCI method where convergence was achieved by a 10.5-million-cell mesh. The simulations were performed in ANSYS Fluent, where modeling using k-ε Realizable turbulence model, with Scalable wall functions and the SimpleC algorithm was chosen. The results showed good prediction of the drag and pressure coefficients, proving the accuracy and efficiency of the approach, while the flow and vortices were visualized and presented in the corresponding diagrams, being indicative of the aerodynamic structures around automotive vehicles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.