Abstract

This work studied a cost-effective electrosorption that driven by microbial fuel cells (MFC-sorption) to remove Cu(2+) from wastewater without an external energy supply. The impact factors, adsorption isotherms and kinetics of the novel process were investigated. It indicated that a low electrolyte concentration and a high solution pH could enhance the Cu(2+) removal efficiency, while the adsorption capacity increased with the increase of numbers of MFCs in series and the initial Cu(2+) concentration. The adsorption isotherms study indicated that the monolayer adsorption in MFC-sorption was dominant. The kinetics study suggested the increase of initial Cu(2+) concentration could enhance the initial adsorption rate. The electrode characterizations verified the existence of Cu2O and Cu on the electrode surface of active carbon fibers (ACFs), suggesting that MFC-sorption was not only an adsorption process, but also a redox reaction process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.