Abstract

Recently, interfacial solar-driven evaporation has received tremendous attention due to its potential for enhancing solar thermal conversation ability via heat localization at the evaporation interface. Diverse materials and configurations have been explored to boost the evaporation using plastic foam as the thermal insulator at the cost of complex assembly and environmental threats. Herein, we demonstrate a biodegradable, cost-effective, and scalable three-dimensional (3D) cotton paper-based solar steam generator prepared by one-step laser-induced forward transfer in the ambient atmosphere. The as-prepared evaporator has excellent solar absorption ability. The defining advantages of this method are that it can easily form a 3D structure and it is free from hazardous raw material involvement and waste generation. With further novel design by using a natural air gap instead of artificial plastic material to insulate the steam generation area and the underlying bulk water, the as-prepared evaporation system can achieve a high evaporation rate of 1711 g m−2 h−1 with a corresponding efficiency of 83% under one sun illumination. Such solar vaporization functions offer new insights into the future development of high-performance solar steam generators through an environmentally friendly and cost-effective pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.